無人駕駛需要多少年才能普及?

時間:2020-04-23

來源:無人駕駛網

0

導語:近日有報道稱,谷歌的一輛無人駕駛汽車在美國加州城市芒廷維尤道路上行駛時,因開得太慢被交警攔下,而谷歌則回應稱這是出于安全和大眾接受角度考慮。

   近日有報道稱,谷歌的一輛無人駕駛汽車在美國加州城市芒廷維尤道路上行駛時,因開得太慢被交警攔下,而谷歌則回應稱這是出于安全和大眾接受角度考慮。
t019badcf0aa2310a2c.webp

  盡管如此,谷歌無人駕駛汽車總行駛里程,在今年10月底已經突破120萬英里(約合193萬公里)大關。驚人的是,這個沒有方向盤、沒有剎車踏板、沒有油門踏板的無人駕駛汽車,經谷歌方面宣稱,從未收到過違章罰單。這樣的記錄,在“馬路殺手”頻現的當下尤為令人驚嘆。

  那么,這樣的技術是如何實現的?無人駕駛汽車如何實現避障?如何識別各種交通信號并作出判斷?行駛路線又如何規劃控制?這些技術的背后,依靠的是攝像頭、雷達、GPS等傳感器檢測道路信息,同時由車載電腦分析處理道路信息數據并控制車輛,使無人車安全、快速到達指定目的地。

  隨著技術的日趨發展,無人駕駛汽車正在從科幻電影中的場景道具變得越來越真實,而無論是谷歌、蘋果、UBER這樣的互聯網科技企業,還是奔馳、沃爾沃、凱迪拉克等傳統汽車廠商,都正在加入這個“戰團”。

  避障主要是由測距儀、雷達跟攝像頭同時得到道路信息,測距儀可以高速獲取障礙物的距離。接著由車載電腦處理信息并且通過控制算法作出線路決策

  為了使無人車安全、快速的到達指定目的地,從原理上來說,需要通過傳感器感知路況和周邊情況,然后傳輸到中央處理器,中央處理器根據人工智能對情況作出判斷,然后通知電傳系統,電傳系統根據信號操控機械裝置,最后由機械裝置操控車輛做出各種動作。

  最為人所好奇的是,當行駛途中障礙物出現時,無人駕駛汽車如何實現避障?華南理工大學機械與汽車工程學院教授李巍華表示,避障主要是由測距儀、雷達跟攝像頭同時得到道路信息,測距儀可以高速獲取障礙物的距離。接著由車載電腦處理信息并且通過控制算法作出線路決策。

  谷歌從2009年至今都在為這項技術埋頭苦干,其中避障和路徑規劃是兩大核心問題。相機、雷達、GPS等用于檢測道路信息的傳感器,就仿如無人駕駛汽車的耳目。

  根據今年5月中旬谷歌披露的技術細節信息,在避障方面,激光測距儀、攝像頭以及雷達堪稱三大關鍵的傳感設備。

  谷歌無人駕駛汽車的一個突出特點就是其車頂上方的旋轉式激光測距儀,該測距儀能發出64道激光光束,幫助汽車識別道路上潛在的危險。該激光的強度比較高,能計算出200米范圍內物體的距離,并借此創建出環境模型。

  在谷歌無人駕駛汽車的前后保險杠上面,一共安裝了四個雷達,這是自適應巡航控制系統的一部分,可以保證無人駕駛汽車在道路行駛時處在安全的跟車距離上,按照谷歌的設計,其無人車需要和前車保持2-4秒的安全反應距離,具體設置根據車速變化。從而能最大限度地保證乘客的安全。

  而安裝于車頭的前置相機主要用于近景觀察,這個相機除了要負責記錄車輛周邊環境等詳細信息,還要負責記錄行駛過程中的交通信號燈、交通標志標線等。如同眼睛的作用,無人駕駛汽車的視覺傳感器系統,在無人駕駛智能車的安全可靠行駛中起著無法替代的作用。

  此外,谷歌汽車的后輪上,還有超聲傳感器。這個傳感器有利于保持汽車在一定的軌道上運行,不至于跑偏。在遇到需要倒車的情況時,這些超聲傳感器還能快速測算后方物體或墻體的距離,幫助汽車在狹窄的車位中實現停靠。

  機器視覺

  圖像處理識別交通信號

  車載計算機的處理運算就如同無人駕駛汽車的大腦。它的運算速度,很大程度上決定了汽車作出準確及時判斷的程度。因此,基于圖像處理的障礙物識別技術成為無人駕駛領域未來發展的一種趨勢

  設想一下,無人駕駛汽車跟在一部車的后面,而前車的轉向燈突然開啟,這時候,無人駕駛汽車該如何作出反應?還有各種的限速、單行道、雙行道和人行道標示等等,這些都需要無人駕駛汽車進行識別。

  在這個時候,車載計算機的處理運算就如同無人駕駛汽車的大腦。它的運算速度,很大程度上決定了汽車作出準確及時判斷的程度。因此,基于圖像處理的障礙物識別技術成為無人駕駛領域未來發展的一種趨勢。

  視覺傳感器系統所需要完成的識別任務,至少包括以下多個方面內容:對車道線進行識別,保證車輛在車道內行駛,并確定需要作有無障礙物判斷的感興趣區域;判斷區域內是否有行人、車輛等需要避讓的障礙物,是否需要對車輛行駛狀態作出及時改變;判斷障礙物是動態還是靜態,如果是動態則預判其下一步行動;當感知部分的傳感器采集到前方的信號燈信息時,要做出正確識別。

  李巍華介紹,在判斷障礙物的動靜態時,無人駕駛汽車首先會識別移動物體是動態還是靜態,假如是動態,就進一步判斷是什么,比如說是人,那遵循人先通過原則;在判斷障礙物性質時,則會通過圖像處理技術,對障礙物的高低大小進行識別,如果不影響車輛通行,則直接通過;而在識別紅綠指示燈時,為了避免同顏色同形狀的其他物體的干擾,視覺系統會將其交通燈視為一個立體視覺的整體,并根據它的高度以及形狀進行判斷。

  要完成這一系列工作,視覺傳感器系統主要由圖像的采集模塊、處理模塊、特征提取模塊等組成。其中圖像采集模塊的主要功能是獲取外界的數字圖像;圖像處理模塊是對采集來的圖像進行預處理,為后面的特征值提取、障礙物的檢測做準備工作。

  為了使識別更有效率,系統通過算法對圖像信息進行篩選,只提取感興趣區域。比如,車輛在直線行駛和轉彎時,智能車對于前方區域進行判定障礙物是否存在的范圍是不一樣的。當車輛根據信號燈指示需要轉彎時,車輛正前方區域的障礙物則不必檢測因此也就不必作為障礙物對待。這樣就避免了對圖像中的所有部分進行處理,在很大程度上保證了系統的實時性。

  導航系統

  定位誤差不超車道寬度

  無人駕駛汽車對GPS定位精度、抗干擾性提出了特殊要求。在無人車行駛時,GPS導航系統要不間斷地對無人車進行定位。在這個過程中,無人車GPS導航系統要求GPS定位誤差不超過一個車道寬度

  無人車面臨的另一關鍵挑戰,是需要確保它們有完美無缺的導航功能。

  快速發展的數字地圖(Digital Map,DM),能為無人駕駛車提供詳細的道路坐標信息,同時路徑規劃算法的不斷優化,為無人駕駛車GPS自主導航系統利用DM進行導航與路徑規劃提供了可能性。今年8月份,奧迪、寶馬和戴姆勒聯手斥資31億美元(約合人民幣197億元)從諾基亞手中收購了Here地圖業務。導航已經成為廠商們研發無人駕駛技術的重要前提。

  實現導航的主要技術,是如今在現實生活中已經廣泛應用的GPS技術。由于GPS技術所具有的全球性、全天候、無積累誤差、自動測量的特點,在無人車中同樣可以利用GPS進行定位、導航。

  由于應用背景的特殊,無人駕駛汽車對GPS定位精度、抗干擾性提出了特殊要求。據了解,在無人車行駛時,GPS導航系統要不間斷地對無人車進行定位。在這個過程中,無人車GPS導航系統要求GPS定位誤差不超過一個車道寬度。

  大幅提升GPS測量精度的是差分GPS測量技術。相比傳統的GPS技術,差分GPS測量會在一個測站對兩個目標的觀測量、兩個測站對一個目標的觀測量或一個測站對一個目標的兩次觀測量之間進行求差,目的在于消去公共的誤差源,包括電離層和對流層效應等。

  差分GPS測量技術為無人駕駛車GPS自主導航系統的實現提供了必要的技術支持,特別是CORS基站網的廣泛建立,用戶實現了大范圍內的實時高精度差分,使導航誤差成功縮減至小于車道寬度,無人車可通過高清相機、激光雷達對交通標志線的識別和馬路道牙的檢測,使無人車行駛時保持在車道內。

  不過,再精準的GPS也會有信號失靈的時候。這時候,無人駕駛汽車的另一項定位技術--慣性導航技術就將派上用場。這項最早應用于軍事領域的技術,一開始是用來為火箭導航的。它采用機械陀螺儀、加速度計作為慣性傳感器,不間斷采集載體的瞬時加速度、瞬時角速度和旋轉角度,以牛頓力學三大定律為理論基礎推算載體的運行速度和運行軌跡,通過不斷的實時計算得到載體位置信息。

  從GPS接受機或慣性導航設備接收到實時傳來的位置數據后,車載電腦會進行分析處理,結合路網文件判定無人車的當前位置,并給出無人車縱向和橫向控制要求,進而達到在無人行駛中的穩定控制。

  5年內或迎技術井噴

  應用展望

  值得注意的是,各廠商不約而同地將一些無人駕駛汽車上市的時間設定在2020年前后。不過,這個無人駕駛汽車并非指真正意義上能夠擺脫司機的駕駛模式

  在不久前結束的第44屆東京車展及第66屆德國法蘭克福國際車展上,有不少廠商紛紛展示了他們所研發的無人駕駛概念車。

  如日產公司展出了配備人工智能自動駕駛功能的IDS概念車,有人駕駛時汽車人工智能能夠學習駕駛者的駕車習慣,并在無人駕駛時模擬這一習慣;豐田公司旗下高端車品牌雷克薩斯展出的該品牌首款氫燃料電池車LF-FC、三菱汽車展出的SUV款eX概念車等,也都具備無人駕駛功能……

  除了傳統車商,科技企業對于無人駕駛技術的應用更加激進,特斯拉甚至已經宣稱,在該品牌較新車型上下載“自動駕駛”(Autopilot)功能,就可以基本實現自動駕駛,但特斯拉同時也警告司機不要完全放棄控制汽車……

  值得注意的是,各廠商不約而同地將一些無人駕駛汽車上市的時間設定在2020年前后。不過,這個無人駕駛汽車并非指真正意義上能夠擺脫司機的駕駛模式,又或者僅適用于個別地區而非完全能在城市道路上實現無人駕駛的汽車。

  據路透社報道,豐田首席安全官吉田盛隆(Moritaka Yoshida)最近在展示公司自動駕駛技術的一次演示會上表示:“我們預期,到2020年汽車還離不開司機。”

  事實上,在業界一般會將無人駕駛技術分成四個階段:第一階段是包括車道偏離警告在內的駕駛員輔助技術;第二階段是半自動駕駛,包括緊急自動剎車、自動泊車等;第三階段是高度自動駕駛,即汽車在駕駛員監控下,自動控制行駛;第四階段是完全自動駕駛,指在沒有駕駛員監控的情況下,汽車實現完全的自動駕駛。

  我們如今所討論的無人駕駛,一般指第三階段及以上的無人駕駛。而谷歌及各大廠商們所希望最終實現的,顯然是最終形態的第四階段。距離實現這一目標,大多數專家認為,至少仍需要數10年的時間。

低速無人駕駛產業綜合服務平臺版權與免責聲明:

凡本網注明[來源:低速無人駕駛產業綜合服務平臺]的所有文字、圖片、音視和視頻文件,版權均為低速無人駕駛產業綜合服務平臺獨家所有。如需轉載請與0755-85260609聯系。任何媒體、網站或個人轉載使用時須注明來源“低速無人駕駛產業綜合服務平臺”,違反者本網將追究其法律責任。

本網轉載并注明其他來源的稿件,均來自互聯網或業內投稿人士,版權屬于原版權人。轉載請保留稿件來源及作者,禁止擅自篡改,違者自負版權法律責任。

如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。

關注低速無人駕駛產業聯盟公眾號獲取更多資訊

最新新聞