哥大利用2D材料控制光相位 用于自動駕駛激光雷達

時間:2020-04-08

來源:騰訊汽車

0

導語:據外媒報道,隨著信息處理和通信的需求不斷增長,納米光學操縱成為了一個關鍵的研究領域。能夠在納米尺度上控制和操縱光會實現大量的應用,包括數據通信、成像、測距、傳感、光譜學、量子和神經電路等,如自動駕駛汽車的激光雷達以及速度更快的視頻點播等。

  據外媒報道,隨著信息處理和通信的需求不斷增長,納米光學操縱成為了一個關鍵的研究領域。能夠在納米尺度上控制和操縱光會實現大量的應用,包括數據通信、成像、測距、傳感、光譜學、量子和神經電路等,如自動駕駛汽車的激光雷達以及速度更快的視頻點播等。

  如今,由于硅在電信波長上具備一定的透明度、具備電光和熱光調制能力以及可與現有的半導體制造技術兼容,已經成為了首選的集成光子學平臺。雖然,硅納米光子在光學數據通信、相控陣列、激光雷達、量子和神經電路等方面取得了重大進展,不過,大規模將硅納米光子集成至上述系統中還有兩個主要障礙:對擴展光學寬帶的需求不斷擴大以及高電力消耗。

  現有的大部分硅相位調制器能夠改變光學信號的相位,但是該過程帶來的代價是很高的光學損耗(電光調制)或很高的電力消耗(熱光調制)。不過,美國哥倫比亞大學團隊表示,他們發現了一種新方式,可以利用2D材料(超薄、0.8納米,或人類頭發的十萬分之一的材料)來控制光相位,而且不會改變其振幅,電力消耗也極低。

  研究人員表示,只要在無源硅波導上放置該超博材料,就能夠像現有的硅相位調制器一樣,大幅改變光的相位,而且光損耗和功耗要低得多。

  眾所周知,過渡金屬雙鹵族化合物(TMD)等半導體2D材料的光學特性會隨著其激子共振峰(吸收峰)附近的自由載流子注入(摻雜)而發生顯著變化。不過,幾乎沒人知道在遠離此類激子共振的電信波長處,摻雜自由載流子對TMD光學性質的影響,在此類激子共振處,材料是透明的,因此可以用于光子電路。

  哥倫比亞大學團隊通過在低損耗氮化硅光腔上集成半導體單層,并在半導體單層摻雜了離子液體,以探測TMD的電光響應。他們觀察到摻雜了離子液體后,相位變化較大,而在環形腔的傳輸響應中,光損耗的變化最小。他們發現,對于單層TMD而言,摻雜引起的相位變化是吸收引起的相位變化的約125倍,明顯高于Si和Si上的III-V等常用的硅光子調制器材料,同時插入損耗可以忽略不計。

  研究人員正在繼續探索和更好地理解強電折射效應的潛在物理機制。他們目前正利用低損耗和低功率相位調制器來取代傳統的移相器,以在光學相控陣、神經和量子電路等大規模應用中減少電力消耗。

低速無人駕駛產業綜合服務平臺版權與免責聲明:

凡本網注明[來源:低速無人駕駛產業綜合服務平臺]的所有文字、圖片、音視和視頻文件,版權均為低速無人駕駛產業綜合服務平臺獨家所有。如需轉載請與0755-85260609聯系。任何媒體、網站或個人轉載使用時須注明來源“低速無人駕駛產業綜合服務平臺”,違反者本網將追究其法律責任。

本網轉載并注明其他來源的稿件,均來自互聯網或業內投稿人士,版權屬于原版權人。轉載請保留稿件來源及作者,禁止擅自篡改,違者自負版權法律責任。

如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。

關注低速無人駕駛產業聯盟公眾號獲取更多資訊

最新新聞